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Abstract. We present exact calculations of the zero-temperature partition function for theq-state
Potts antiferromagnet (or, equivalently, the chromatic polynomial) for two families of arbitrarily
long strip graphs of the square lattice with periodic boundary conditions in the transverse direction
and (i) periodic and (ii) twisted periodic boundary conditions in the longitudinal direction, so that
the strip graphs are embedded on (i) a torus and (ii) a Klein bottle. In the limit of infinite length, we
calculate the exponent of the entropy,W(q), show it to be the same for (i) and (ii), and determine
its analytic structure.

The chromatic polynomialP(G, q) counts the number of ways that one can colour a graphG

with q colours such that no two adjacent vertices have the same colour [1] (for reviews, see
[2–4]). The least positive integerq for which P(G, q) is nonzero is the chromatic number,
χ(G). Besides its intrinsic mathematical interest, the chromatic polynomial has an important
connection with statistical mechanics since it is the zero-temperature partition function of
the q-state Potts antiferromagnet (AF) [5, 6] onG: P(G, q) = Z(G, q, T = 0)PAF . The
Potts AF exhibits nonzero ground state entropyS0 6= 0 (without frustration) for sufficiently
largeq on a given lattice graph and is thus an exception to the third law of thermodynamics.
This is equivalent to a ground state degeneracy per siteW > 1, sinceS0 = kB lnW .
Denoting the number of vertices ofG asn = v(G) and assuming a reasonable definition
of {G} = limn→∞G, we have§W({G}, q) = limn→∞ P(G, q)1/n. SinceP(G, q) is a
polynomial, one can generalizeq fromZ+ toC. The zeros ofP(G, q) in the complexq plane
are called chromatic zeros; a subset of these may form an accumulation set in then→∞ limit,
denotedB, which is the continuous locus of points whereW({G}, q) is nonanalytic [7, 8, 16]
(Bmay be null, andW may also be nonanalytic at certain discrete points). The maximal region
in the complexq plane to which one can analytically continue the functionW({G}, q) from
physical values where there is nonzero ground state entropy is denotedR1. The maximal value
of q whereB intersects the (positive) real axis is labelledqc({G}).
§ At certain special pointsqs (typically qs = 0, 1, . . . , χ(G)), one has the noncommutativity of limits
limq→qs limn→∞ P(G, q)1/n 6= limn→∞ limq→qs P (G, q)1/n, and hence it is necessary to specify the order of the
limits in the definition ofW({G}, qs) [7]. We use the first order of limits here; this has the advantage of removing
certain isolated discontinuities inW .
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We consider strips of the square lattice with arbitrary lengthLx = m vertices and fixed
width Ly vertices (with the longitudinal and transverse directions taken to bex̂ andŷ). The
chromatic polynomials for the cyclic and M̈obius strip graphs of the square lattice were
calculated forLy = 2 in [9] (see also [10–12]) and forLy = 3 in [13, 14]. After studies
of the chromatic zeros forLy = 2 in [9,15,16],W andB were determined for this case in [7]
and forLy = 3 in [13]. An important question concerns the effect of boundary conditions
(BCs), and hence graph topology, onP , W , andB. We use the symbols FBCy and PBCy
for free and periodic transverse boundary conditions and FBCx , PBCx , and TPBCx for free,
periodic, and twisted periodic longitudinal boundary conditions. The term ‘twisted’ means that
the longitudinal ends of the strip are identified with reversed orientation. These strip graphs
can be embedded on surfaces with the following topologies†: (i) (FBCy , FBCx): strip; (ii)
(PBCy , FBCx): cylindrical; (iii) (FBCy , PBCx): cylindrical (denoted cyclic here); (iv) (FBCy ,
TPBCx): Möbius; (v) (PBCy , PBCx): torus; and (vi) (PBCy , TPBCx): Klein bottle‡. Here
we present and analyse chromatic polynomials for the strip graph of the square lattice with
Ly = 3 (i.e. cross sections forming triangles) and boundary conditions of type (v) and (vi):
torus and Klein bottle. We recall that unlike graphs of type (i)–(v), the Klein bottle graph (vi)
cannot be embedded without self-intersection inR3. ForLx = m > 2 where they are well
defined, theLy = 3 torus and Klein bottle graphs haven = LxLy vertices,e = 2n edges, the
same girthg (length of minimum closed circuit) and numberkg of circuits of lengthg, and the
respective chromatic numbersχ = 3 andχ = 4.

We label a particular type of strip graph asGs and the specific graph of lengthLx = m
repeated subgraph units, e.g. columns of squares in the case of the square strip, as(Gs)m. If
one thinks of the graph as embedded on a rectangular strip of paper, with its upper and lower
sides glued together and its longitudinal ends glued with direct or reversed orientation, then
Lx is the length of this strip of paper in subgraph units. Writing

P((Gs)m, q) =
n−1∑
j=0

(−1)jhn−j qn−j (1)

and using the results that [3,25]hn−j =
(
e

j

)
for 06 j < g−1 (whencehn = 1 andhn−1 = e)

andhn−(g−1) =
(
e

g−1

) − kg, it follows that form greater than the above-mentioned minimal
value, thesehj are the same for the torus and Klein bottle of each typeGs . For a givenGs , as
m increases, thehn−j for the torus and Klein bottle graphs become equal for largerj .

A generic form for chromatic polynomials for recursively defined families of graphs, of
which strip graphsGs are special cases, is

P((Gs)m, q) =
Nλ∑
j=1

cj (q)(λj (q))
m (2)

wherecj (q) and theNλ termsλj (q) depend on the type of strip graphGs but are independent
of m.

For anLy = 3,Lx = m strip with (PBCy , FBCx) one has [20]P(sq(Ly = 3)m, PBCy ,
FBCx, q) = q(q − 1)(q − 2)(q3− 6q2 + 14q − 13)m−1, whence

W(sq(Ly = 3),PBCy,FBCx, q) = (q3− 6q2 + 14q − 13)1/3 (3)

with B = ∅.
† For the triangular lattice with cylindrical BCs,W andB were calculated in [17]. Other calculations ofP ,W , and
B have been performed for strips having BCs of type (i) [18–20], (ii) [20], (iii) [21,22], (iv) [14,21].
‡ These BCs can all be implemented in a manner that is uniform in the lengthLx ; the case (vii) (TPBCy , TPBCx )
with the topology of the projective plane requires different identifications asLx varies and will not be considered here.
For connections between topology and graph properties, see e.g. [23,24].
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In order to calculateP , one may use recursive methods based on iterative use of deletion-
contraction theorems [9, 10, 18] or a colouring compatibility matrix method described in
[12,26]. For theLy = 3 torus (t) graphs, one finds

P(sq(Ly = 3)m,PBCy,PBCx, q) =
8∑
j=1

ct,j (λt,j )
m (4)

where

λt,1 = −1 ct,1 = q3− 6q2 + 8q − 1 (5)

λt,2 = q3− 6q2 + 14q − 13 ct,2 = 1 (6)

λt,3 = q − 1 ct,3 = (q − 1)(q − 2)

2
(7)

λt,4 = q − 4 ct,4 = (q − 1)(q − 2) (8)

λt,5 = q − 2 ct,5 = q(q − 3) (9)

λt,6 = q − 5 ct,6 = q(q − 3)

2
(10)

λt,7 = −(q2 − 7q + 13) ct,7 = q − 1 (11)

λt,8 = −(q − 2)2 ct,8 = 2(q − 1). (12)

For theLy = 3 Klein (K) bottle graphs one finds

P(sq(Ly = 3)m,PBCy,TPBCx, q) =
5∑
j=1

cK,j (λK,j )
m (13)

where

λK,1 = λt,1 = −1 cK,1 = −(q − 1) (14)

λK,2 = λt,2 = q3− 6q2 + 14q − 13 cK,2 = ct,2 = 1 (15)

λK,3 = λt,3 = q − 1 cK,3 = −ct,3 = − (q − 1)(q − 2)

2
(16)

λK,4 = λt,6 = q − 5 cK,4 = ct,6 = q(q − 3)

2
(17)

λK,5 = λt,7 = −(q2 − 7q + 13) cK,5 = ct,7 = q − 1. (18)

The termsλt,j , j = 4, 5, 8 do not enter in equation (13). We contrast this with earlier findings.
For a given strip,Nλ was found to be larger for (FBCy , PBCx) than (FBCy , FBCx) [13,18,21].
For theLy = 3 square lattice strip case,Nλ = 2 for (FBCy , FBCx) butNλ = 1 for (PBCy ,
FBCx), because of the special feature that the cross sections were complete graphs,Kp with
p = 3 and hence the intersection theorem led to a factorized, monomial form forP . It was
found [13, 14] that for a given type of lattice strip,Nλ is the same for the (FBCy , PBCx) =
cyclic and (FBCy , TPBCx) = Möbius topologies, although thecj were, in general, different.
The present results show that reversal of orientation in the identification of opposite ends of a
strip can lead to a change inNλ†.

LetC =∑Nλ
j=1 cj . We findC = P(K3, q) = q(q−1)(q−2) for theLy = 3 torus graphs

andC = 0 for theLy = 3 Klein bottle graphs. The zero results from the special constraints
introduced by the boundary conditions and is analogous to the fact thatC = 0 for theLy = 2
Möbius square strip [9] and its homeomorphic expansions [21]. However, not all Möbius strip

† A different sort of change inP , accompanied by a change inB, can be obtained if one considers a homogeneous
recursive family and the same family with a finite inhomogeneous subgraph inserted, e.g., the ‘rope ladder’ graphs
of [16] or two such subgraphs forming ends, namely, theJ (5H)I strip graphs in [18].
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Figure 1. Chromatic zeros for theLy = 3,Lx = m = 10 torus graph.

graphs haveC = 0; for example, for theLy = 3 Möbius strips of the square and kagomé
lattices,C = q(q − 1) andC = q, respectively [14].

Chromatic zeros for theLy = 3,m = 10 torus graph are shown in figure 1; with this value
of m, the chromatic zeros for the Klein bottle graph are quite similar. The locusB and theW
functions are the same for the torus and Klein bottle graph families. We findqc = 3, which,
interestingly, is the same value as for the infinite 2D square lattice. The locusB has support
for Re(q) > 0 and separates theq plane into three regions. The outermost one, regionR1,
extends to infinite|q| and includes the intervalsq > 3 andq 6 0 on the realq axis. Region
R2 includes the real interval 26 q 6 3 and extends upward and downward to the complex
conjugate triple points onB at qt andq∗t , whereqt ' 2.5 + 1.4i. RegionR3 is the innermost
one and includes the real interval 06 q 6 2. The boundary betweenR2 andR3 curves to the
right as one increases|Im (q)|, extending fromq = 2 upward toqt and downward toq∗t . As is
evident in figure 1, the density of chromatic zeros on theR1–R3 boundary nearq = 0 and on
theR3–R2 boundary is somewhat smaller than on the right-hand part of theR2–R1 boundary.

In regionR1, λt,2 = λK,2 is the dominantλj , so

W = (q3− 6q2 + 14q − 13)1/3 q ∈ R1. (19)

The fact that this is the same asW for the (PBCy , FBCx) case, equation (3), is a general result.
The importance of the PBCy is evident from the fact that for the same width of three squares,
the strip with (FBCy , FBCx) yields a differentW [18].

In regionR2, λt,6 = λK,4 is dominant, so

|W | = |q − 5|1/3 q ∈ R2 (20)

(in regions other thanR1, only |W | can be determined unambiguously [7]). In regionR3,
λt,7 = λK,5 is dominant, so

|W | = |q2 − 7q + 13|1/3 q ∈ R3. (21)

The outer boundary separatingR1 from the inner two regions is oblate, extending out to a
maximum of about|Im (q)| ' 2.5 for Re(q) ' 1.5 (and passing throughq = 0 and 3). For all
the three points,q = 0, 2, 3, whereB crosses the realq axis, it does so vertically. The present
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results are in accord with the inference [13, 18] that for a recursive graph with regular lattice
structure, a necessary and sufficient condition forB to separate theq plane into two or more
regions is that it contains a global circuit, i.e. a path along a lattice direction whose length goes
to infinity asn → ∞; here this is equivalent to PBCx . The fact thatB is the same for these
torus and Klein families means that none ofλt,j , j = 4, 5, 8 is a dominant term.

In this letter we have reported the first calculations of the zero-temperature Potts
antiferromagnet partition function (chromatic polynomial) and exponential of the entropy,
W , for strips of the square lattice with widthLy = 3 and arbitrary length, having periodic
transverse and periodic and twisted periodic longitudinal boundary conditions (torus and Klein
bottle families of graphs). Our work elucidates the role that these boundary conditions and
the associated topologies play; the torus and Klein bottle graphs have interestingly different
chromatic polynomials, with differentNλ (Nλ = 8 and 5, respectively), but theW functions
and hence the boundariesB are the same. The forms that we obtain forP are simpler than
those found [13, 14] for the analogousLy = 3 cyclic and M̈obius square lattice strips, which
hadNλ = 10 and some algebraic nonpolynomialλj , in contrast to the polynomialλj in
equations (4)–(18). The resultant boundariesB are also simpler, involving only three rather
than seven, regions. Remarkably, the valueqc = 3 that we find for the torus and Klein bottle
strips is the same as for the infinite square lattice.

The research of RS was supported in part by the US NSF grant PHY-97-22101.
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