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Abstract. We present exact calculations of the zero-temperature partition function fpratage

Potts antiferromagnet (or, equivalently, the chromatic polynomial) for two families of arbitrarily
long strip graphs of the square lattice with periodic boundary conditions in the transverse direction
and (i) periodic and (ii) twisted periodic boundary conditions in the longitudinal direction, so that
the strip graphs are embedded on (i) a torus and (ii) a Klein bottle. In the limit of infinite length, we
calculate the exponent of the entropl(g), show it to be the same for (i) and (ii), and determine

its analytic structure.

The chromatic polynomiaP (G, ¢) counts the number of ways that one can colour a g@ph
with ¢ colours such that no two adjacent vertices have the same colour [1] (for reviews, see
[2—-4]). The least positive integer for which P(G, ¢) is nonzero is the chromatic number,

x (G). Besides its intrinsic mathematical interest, the chromatic polynomial has an important
connection with statistical mechanics since it is the zero-temperature partition function of
the g-state Potts antiferromagnet (AF) [5,6] 6h P(G,q) = Z(G,q,T = 0)psr. The

Potts AF exhibits nonzero ground state entrdpy# O (without frustration) for sufficiently
largeg on a given lattice graph and is thus an exception to the third law of thermodynamics.
This is equivalent to a ground state degeneracy perWite- 1, sinceSy = kglnW.
Denoting the number of vertices of asn = v(G) and assuming a reasonable definition

of {G} = lim,_ G, we have8W({G},q¢) = lim,_ P(G,¢)Y". Since P(G,q) is a
polynomial, one can generalizefrom Z. to C. The zeros o (G, ¢) in the complex; plane

are called chromatic zeros; a subset of these may form an accumulation set ivthe limit,
denoted3, which is the continuous locus of points whé¥&{G}, ¢) is nonanalytic [7, 8, 16]

(B may be null, andv may also be nonanalytic at certain discrete points). The maximal region
in the complexg plane to which one can analytically continue the functié® G}, ¢) from
physical values where there is nonzero ground state entropy is defotétie maximal value

of ¢ whereB intersects the (positive) real axis is labelled{G}).

§ At certain special pointsys (typically ¢ = 0,1,..., x(G)), one has the noncommutativity of limits
My g, lIMysso0 P(G, Y™ # lim, o0 lim 4, P(G, @)™, and hence it is necessary to specify the order of the
limits in the definition of W ({G}, g5) [7]. We use the first order of limits here; this has the advantage of removing
certain isolated discontinuities .
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We consider strips of the square lattice with arbitrary length= m vertices and fixed
width L, vertices (with the longitudinal and transverse directions taken to &ed y). The
chromatic polynomials for the cyclic and dius strip graphs of the square lattice were
calculated forL, = 2 in [9] (see also [10-12]) and fdt, = 3 in [13, 14]. After studies
of the chromatic zeros fak, = 2 in [9, 15, 16],W andB were determined for this case in [7]
and forL, = 3 in [13]. An important question concerns the effect of boundary conditions
(BCs), and hence graph topology, &7 W, andB. We use the symbols FBGind PBG
for free and periodic transverse boundary conditions and,fFB8C,, and TPBG for free,
periodic, and twisted periodic longitudinal boundary conditions. The term ‘twisted’ means that
the longitudinal ends of the strip are identified with reversed orientation. These strip graphs
can be embedded on surfaces with the following topologiest: (i) (FBBC,): strip; (ii)

(PBC,, FBC,): cylindrical; (iii) (FBC,, PBGC,): cylindrical (denoted cyclic here); (iv) (FBC
TPBC,): Mobius; (v) (PBG, PBC,): torus; and (vi) (PBC, TPBC,): Klein bottlet. Here

we present and analyse chromatic polynomials for the strip graph of the square lattice with
L, = 3 (i.e. cross sections forming triangles) and boundary conditions of type (v) and (vi):
torus and Klein bottle. We recall that unlike graphs of type (i)—(v), the Klein bottle graph (vi)
cannot be embedded without self-intersectio®i For L, = m > 2 where they are well
defined, thel, = 3 torus and Klein bottle graphs have= L, L, verticese = 2n edges, the
same girthg (length of minimum closed circuit) and numbgrof circuits of lengthg, and the
respective chromatic numbeys= 3 andy = 4.

We label a particular type of strip graph @ and the specific graph of length, = m
repeated subgraph units, e.g. columns of squares in the case of the square &fjp,, a$f
one thinks of the graph as embedded on a rectangular strip of paper, with its upper and lower
sides glued together and its longitudinal ends glued with direct or reversed orientation, then
L, is the length of this strip of paper in subgraph units. Writing

n—1

P(Gmrq) =Y (=D hyjq"7 (1)
j=0

and using the results that [3,2B]_; = (j) for0 < j < g—1(whencér, = 1andh, ;1 = e)
andh,—-1) = (,%,) — ke, it follows that form greater than the above-mentioned minimal
value, thesé ; are the same for the torus and Klein bottle of each typeFor a givenG,, as
m increases, thg,_; for the torus and Klein bottle graphs become equal for lajger

A generic form for chromatic polynomials for recursively defined families of graphs, of
which strip graph<’, are special cases, is

N,
P((G)m: @) = Y _ ci(@)(hj(q@)" )
j=1
wherec;(¢) and theN, termsi ;(¢) depend on the type of strip gragh but are independent
of m.
ForanL, = 3, L, = m strip with (PBG,, FBC,) one has [20JP(sq(L, = 3),,, PBC,,
FBC:,q) = q(q — 1)(q — 2)(¢° — 6g% + 149 — 13)"~%, whence
W(sq(L, = 3), PBC,, FBC,, ¢) = (¢° — 6¢% + 14g — 13)*/3 3)
with B = ¢.

T For the triangular lattice with cylindrical BC#/ andB were calculated in [17]. Other calculations®f W, and

B have been performed for strips having BCs of type (i) [18-20], (ii) [20], (iii) [21, 22], (iv) [14, 21].

T These BCs can all be implemented in a manner that is uniform in the léngtie case (vii) (TPBG, TPBC;)
with the topology of the projective plane requires different identificatiors,asries and will not be considered here.
For connections between topology and graph properties, see e.g. [23, 24].
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In order to calculate?, one may use recursive methods based on iterative use of deletion-
contraction theorems [9, 10, 18] or a colouring compatibility matrix method described in
[12,26]. For theL, = 3 torus ¢) graphs, one finds

8

P(sq(Ly = 3),,, PBC,,PBC..q) = > ¢/ ;0. ))" (4)

j=1

where

Aa=-—1 c1=q°—6g°+8g—1 (5)
Mo =q°—6g%+14g — 13 co=1 (6)

(g—Dg -2
Mz=qg-—1 €1 3= % (7)
ha=q—4 ca=(q—1qg—-2 (8)
his=q—2 a5 =q(g—23) 9)

_ _q9¢@—-3

Me=¢qg—5 o= "0 — (10)
M7 =—(q°—Tq+13 c7=q—-1 (11)
Me=-(q—-2°  cs=2q-1). (12)

For theL, = 3 Klein (K) bottle graphs one finds

5
P(sq(Ly =3, PBC,, TPBC..q) = Y _ ck.; (g )" (13)

j=1
where
Aki1=i1=-1 ck1=—(@—-1 (14)
Ak2=h2=q°—6¢°+14g — 13 ck2=¢p2=1 (15)
—D(@g -2
Akz=M3=q—1 Ck3=—C3= —uz(q) (16)
(g -3

Aka=Xle=q—95 Ck4=Cr6= % (17)
Aks=M7=—(q>—Tg+13 cks=¢7=q—1 (18)

Theterms,, ;, j = 4,5, 8 do not enter in equation (13). We contrast this with earlier findings.
For a given strip)V; was found to be larger for (FBCPBC,) than (FBG, FBC,) [13,18,21].

For theL, = 3 square lattice strip cas#&, = 2 for (FBC,, FBC,) but N, = 1 for (PBC,,

FBC,), because of the special feature that the cross sections were complete gramit)

p = 3 and hence the intersection theorem led to a factorized, monomial fori. fttrwas

found [13, 14] that for a given type of lattice stripy, is the same for the (FBC PBC,) =

cyclic and (FBG, TPBC,) = Mobius topologies, although the were, in general, different.

The present results show that reversal of orientation in the identification of opposite ends of a
strip can lead to a change vy, T.

LetC = Z?’il cj. WefindC = P(Ks, q) = q(q —1)(q —2) fortheL, = 3 torus graphs
andC = 0 for theL, = 3 Klein bottle graphs. The zero results from the special constraints
introduced by the boundary conditions and is analogous to the faaC'tka for theL, = 2
M0obius square strip [9] and its homeomorphic expansions [21]. However, nobhluslstrip
T A different sort of change i?, accompanied by a change/# can be obtained if one considers a homogeneous

recursive family and the same family with a finite inhomogeneous subgraph inserted, e.g., the ‘rope ladder’ graphs
of [16] or two such subgraphs forming ends, namely, B H)! strip graphs in [18].
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Figure 1. Chromatic zeros for thé, = 3, L, = m = 10 torus graph.

graphs haveC = 0; for example, for thel, = 3 Mobius strips of the square and kagom
lattices,C = g(¢ — 1) andC = ¢, respectively [14].

Chromatic zeros for the, = 3,m = 10 torus graph are shown in figure 1; with this value
of m, the chromatic zeros for the Klein bottle graph are quite similar. The IBcusd theWw
functions are the same for the torus and Klein bottle graph families. Weyfird 3, which,
interestingly, is the same value as for the infinite 2D square lattice. The Bbas support
for Re(¢) > 0 and separates theplane into three regions. The outermost one, redign
extends to infinitdg| and includes the intervals > 3 andg < 0 on the real axis. Region
R> includes the real interval £ ¢ < 3 and extends upward and downward to the complex
conjugate triple points oB atg, andg;*, whereg, ~ 2.5 + 14i. RegionRj is the innermost
one and includes the real intervakOg < 2. The boundary betweekR, and R3 curves to the
right as one increasgisn (¢)|, extending fromy = 2 upward tag, and downward tg;". Asis
evident in figure 1, the density of chromatic zeros onRheR3 boundary neag = 0 and on
the R3—R, boundary is somewhat smaller than on the right-hand part aRtk&, boundary.

InregionRy, A, 2 = A 2 is the dominank ;, so

W = (g% — 6g% + 149 — 13)%/3 q € Ru. (19)
The fact that this is the same B5for the (PBG, FBC,) case, equation (3), is a general result.
The importance of the PBGs evident from the fact that for the same width of three squares,
the strip with (FBG, FBC,) yields a different [18].
In regionRy, A; 6 = Ak 4 IS dominant, so
Wi=1l¢-5"  geR (20)
(in regions other thamR;, only |W| can be determined unambiguously [7]). In regi®s
Ar7 = Ak 5 is dominant, so
Wl =1¢°-7¢+13"® g €Rs (21)
The outer boundary separatiRy from the inner two regions is oblate, extending out to a

maximum of aboutim (¢)| ~ 2.5 for Re(¢) ~ 1.5 (and passing through= 0 and 3). For all
the three pointy; = 0, 2, 3, whereB crosses the regl axis, it does so vertically. The present
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results are in accord with the inference [13, 18] that for a recursive graph with regular lattice
structure, a necessary and sufficient conditionddo separate the plane into two or more
regions is that it contains a global circuit, i.e. a path along a lattice direction whose length goes
to infinity asn — oo; here this is equivalent to PBC The fact thats is the same for these
torus and Klein families means that none\gf;, j = 4, 5, 8 is a dominant term.

In this letter we have reported the first calculations of the zero-temperature Potts
antiferromagnet partition function (chromatic polynomial) and exponential of the entropy,
W, for strips of the square lattice with width, = 3 and arbitrary length, having periodic
transverse and periodic and twisted periodic longitudinal boundary conditions (torus and Klein
bottle families of graphs). Our work elucidates the role that these boundary conditions and
the associated topologies play; the torus and Klein bottle graphs have interestingly different
chromatic polynomials, with different, (N, = 8 and 5, respectively), but th& functions
and hence the boundarigsare the same. The forms that we obtain folare simpler than
those found [13, 14] for the analogoils = 3 cyclic and Mdbius square lattice strips, which
had N, = 10 and some algebraic nonpolynomigl, in contrast to the polynomial; in
equations (4)—(18). The resultant boundattesare also simpler, involving only three rather
than seven, regions. Remarkably, the vajue- 3 that we find for the torus and Klein bottle
strips is the same as for the infinite square lattice.

The research of RS was supported in part by the US NSF grant PHY-97-22101.
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